Sharp Bernstein inequality and applications to
Machine Learning

Liming Wu

HIT and UCA

31 July 2023
in Conference on Markov Processes and Related Fields. Tianjin University

1/29



Outline

@ Introduction: empirical risk principle (ERP) in ML.

@ Probabilistic problems coming from the ERP: the curse of di-
mension (CoD)

© Talagrand’s concentration inequality: overcoming the curse of
dimension (CoD)?

@ Best known bias estimate in terms of VC dimension
© Bernstein's concentration inequality: old and some new results

@ Applications: we can verify quickly the non-efficiency of a learn-
ing machine.
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1. Introduction: empirical risk principle (ERP) in ML.

We have two random variables (r.v.): X valued in a domain D of
RY, real-valued r.v. V: X is thought as cause, Y is the effect. The
joint law u(-) =P(Z € -) of Z = (X,Y) is unknown. We want to
know what is the “best” way to describe the dependence of Y upon
X. To this purpose we dispose of a great sample of data

AR (Xla}/i)v"' yLp = (XmYn>

assumed to be the independent copies of Z = (X,Y).
Learning machines furnish a special class of functions

F={f(z,0);6 € ©}

to approximatively learn the the dependence of Y upon X, where
© C RV is a domain of RY | N being the number of training
parameters which is often very huge (N < 10! for ChatGPT).
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1. Introduction: ERP in ML (cont’)

To describe what means the “best way”, we are given a risk or loss
function

Q(z,0) = (y — f(x,0))? or |z — f(x,0)| or other forms,

where z = (z,y) € D x R. One main purpose of learning machines
is to minimise the empirical risk function

1 n
Rpa(0) =~ > Q2 0) (1)
k=1
among all § € ©, i.e. to find the minimisers of
arg min R n(0) = {0, € ©| Rpn(0,) < Ren(6), V0 €O} (2)
€

(that is called “training the parameters’ in machine learning).
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1. Introduction: ERP in ML (cont’)

When Q(z,0) = (y — f(z,0))?, the theoretical risk of the learning
machine for a given 6 is

R(0) = E(Y - [(X,0))” = E(Y — fo(X))* + E(fo(X) - f(X,0))

where fo(z) = E(Y|X = z) is the conditional expectation, known
as the non-linear regression function. Then the theoretical minimal
risk of the learning machine is
inf R(9) = E(Y — fo(X))? + inf E(fo(X) — f(X.0)2%  (3)
fco 0cO
The first term at the right hand side (r.h.s.) can not be diminished
by any learning machine (because of the “random” dependence as-
sumption of Y upon X), and the least-square error

inf E(fo(X) = /(X,0))*

qualifies the (theoretical optimal) efficiency of the learning machine.
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1. Introduction: ERP in ML (cont’)

Empirical Risk Principle (ERP in short), laid by

V.N. Vapnik: The Nature of Statistical Learning Theory, Second
Edition. Springer 1999.
as a basic (starting) principle for statistical learning theory, means
roughly

peln.e) = P (ut R (0) < jut RO) <)
(4)
p—(n,e) =P (91161(3 Rgn(0) > elg(g R(0) + 5)

go both to zero for any € > 0. That is a consequence of the
Glivenko-Cantelli theorem about the (uniform) law of large number

in empirical processes.

When |Q(z,6)| < M is bounded, a necessary and sufficient condi-
tion for the Glivenko-Cantelli theorem in terms of the VC entropy
number is known ([14, §2.3.4, Theorem 2.3]).

On the other hand, if Q(z,0) is continuous in # and O is compact,
ERP holds. 6/29



2. Probabilistic problems comed from the ERP

@ The first error probability p(n,e) gives an upper bound of the
theoretical minimal risk:

inf R(0) < inf Rp (0
J6 ) S ot fren @)+ 2

with probability 1 — p4 (n,€) (the so called confidence level),

@ whereas the second error probability p_(n,e) gives a lower
bound of the theoretical minimal risk:

inf R(0) > inf Rp,(0) —
J25 FOO) > juf Real®) =

with probability 1 — p_(n, ¢).
In other words, p;(n,e) quantifies how good a leaning machine is;
p—(n,e) quantifies the non-efficiency of a leaning machine.
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2. Probabilistic problems comed from the ERP: the curse
of dimension (CoD)

Estimating the above two error probabilities is then a fundamental
question in machine learning.

At first the classical limit theorems such as Donsker's central limit
theorem (or invariance principle, see [9], [10]), the large and mod-
erate deviation principles (W. [17] (94); R. Wang et al. [16](10)),
which are only asymptotic (when n — +00), can not be applied
directly, because the disposed sample size n can not be much big-
ger than the number IV of parameters, and the dimension d of the
input vector X is often very high (256 x 256 pixels for a picture for
example).
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2. Probabilistic problems comed from the ERP: CoD
(cont'd)

Recent progresses in high dimensional probability show that the error
probabilities depend often on the dimension d and the number N
of parameters, see Fournier and Guillin [5] (2015) for the dimension

dependence:

T opl/d’

and the recent book in preparation [15] (2020) by Vershynin for an

account of art for the dependence on N, d.

See the works of F.Y. Wang and his collaborators for the Wasser-
stein distance between the empirical distribution and its stationary

distribution of diffusions.

Conclusion : Wasserstein distance is too sensible to the dimension

d, it gives rise to the CoD.
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2. Probabilistic problems comed from the ERP:
overcoming the curse of dimension (CoD)?

The whole book of Vapnik is to show that py(n,e) — 0 with an
explicit concentration inequality in terms of VC dimension or VC
entropy number.
His results together with recent developments in approximation the-
ory of the neural network:
© Approximation theory: for deterministic dependence Y = f(X)
and for neural network,

if the neural network is sufficiently wide or depth: the number
of units is large enough.
See E (ICM2020) .
@ For 1-layer neural network, p4 () may be small, even for large
N and d, but not so great (Vapnik [14]).
Those 2 demands are contradictory!
No word about p_(n,¢) in Vapnik [14] !
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3. Talagrand’s concentration inequality: overcoming the
curse of dimension (CoD)?

Talagrand ([11, 12, 13], 94A0P, 95IHES, 96Inv.Math.) investigated
in depth the concentration phenomena on product measure spaces
and renewed the theory of empirical processes. Massart [8] (AOP00)
found explicit constants in Talagrand’s concentration inequality, by
refining the log-Sobolev inequality approach of Ledoux.

Theorem 1

Given

@ a sequence of i.i.d.r.v. ({)r>1 valued in some Polish space S
equipped with the Borel o-field, of common law p;

@ an at most countable class H of bounded measurable functions
h on S such that |h| < b;
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3. Talagrand’s concentration inequality: overcoming the
curse of dimension (CoD)?

let

n

Z = sup |~ S (h(gs) — p(W))] (u(h) = /S hdju = Eh(£1)

hen i
and
o?(H) = sup Var,(h). (5)
heH
Then for any € > 0,
8z bz C
P <Z> (14+e)EZ +0o(H) n+/<c(5)n> <e ™ V>0 (6)

where k(g) = 2.5 + 22,
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3. Talagrand’s concentration inequality: overcoming the
curse of dimension (CoD)?

Applying it to H = {Q(2,0); 0 € O} we get

max(p. <), ()} < F (| uf Re0) - jnf RO)| > <)

<P (sup R0 (0) - R0 > )

0cO
<e® x>0
where
8 b
e =(1+06)Esup|Rpna(0) — RO)| +o(H)\/ — + w(6)—  (7)
0cO n n

for an arbitrary 6 > 0. Except the bias
Esup |Rpn,(0) — R(0)],
0cO

the dependence on N,d are only through the maximal variance
o?(H) !
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4. Best known bias estimate in terms of VC dimension

Theorem 2

(Vershynin [15, Theorem 8.3.23]) Assume that a < h < b for all

h € H and the VC dimension vc(H) of H is finite (the so called VC
class). Then

Esup(Lo(h), u(h)) < K72 (b~ ) (8)
where K > 0 is an absolute constant, and

- 33,

k=1

3\'—‘
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4. Best known bias estimate in terms of VC dimension
(cont'd)

Conclusion: with probability a € (0,5, 1), for z = —log(1 — «),

[inf R(0) — inf Ris(0)

9
< (K VCS‘[) —1—0(7-[)\/%4‘ 5(5)22) (b—a) 9)

In other words, if the sample size n > vc(H), the empirical mini-
mal risk infy R ,,(0) of the learning machine attains the theoretical
minimal risk infy R (6).

The dimension-dependence on d, N is transformed into that on the
VC dimension vc(H) of the learning machine.
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5. Sharp Bernstein's concentration inequality

Purposes of this talk:
@ A dimension-free estimate for p_(n, ¢)

@ removing the boundedness assumption.

16/29



5.1. Bernstein's concentration inequality: some known
results

Theorem 3
(Gozlan-Léonard [7]) Given the constants cg > 0,M > 0 and a
u-exponentially integrable function h on S(= D x R), i.e.

36>0: / O ldp < 400, (10)
S

the following properties are equivalent:
(1) The log-Laplace transform of h(Z) satisfies

2
A(N) := log EeMMZ)—n(P] ¢ e

< ma A€ (0,1/M);

(11)
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5.1. Bernstein's concentration inequality: some known
results

(2) foranyr >0andn>1,

2r2

2
cB (1/1+2§§’“+1)

P(Ln(f) = p(f) > 1) <exp | —n

(3) forany x >0 andn > 1,

P (Lnu) () > 2B M”f) <e™ (13)

n n

(4) the following transport-entropy inequality holds:

v(f) = uf) < V2eH(v|p) + MH(v|p),  (14)

for all v € M1 (S) such that v < p and v(|f]) < +o0.
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5.1. Bernstein's concentration inequality: some known
results

In particular, when (11) holds, then the following Bernstein's con-
centration inequality holds:

2

P(Ln(f) — u(f) >r) <exp <_2(0137:‘7M> , r>0. (15)

Remarks:

(1) By the order 2 limit expansion of Taylor-Young at A = 0+
in (11), we see that the Bernstein concentration constant cp
satisfies

cg = Var,(f) = p(f?) = (u(f)). (16)
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5.1. Bernstein's concentration inequality: some known
results

(2) Two sided (for both +f) Bernstein's concentration inequality
holds for some cp, M if and only if f(Z) is exponentially inte-
grable:

Iy = inf{C > 0 [ (1€ = 1)du < 1) < 400
S

(Orlicz norm in LYt (), 91 (z) := el — 1).

Theorem 4

(Classical) If f is upper bounded and p-square integrable, (11)
holds with

e = Var(f), M= 2I(f = p(P)loe: (17)
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5.1. Bernstein's concentration inequality: some known

results

We recall its proof.

Proof.
We may assume that u(f) =0 and f < 1. By the inequality

eg”<1—i-ac+g£—2 _ x
b 2 1—at/3’

<3
we have for all A € (0, 3),

2,(f2 2, (£2
Ee/\f < 1+/\,U/(f)+2()\1'[i(‘§/)3) < exp (2(>\1'li(‘§\/)3))

That is (11) with ¢p, M given in (17).

OJ
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5.1. Bernstein's concentration inequality: some known
results

Theorem 5

(Bolley-Villani 04, Gozlan-Léonard 07) If f is p-exponentially inte-
grable, then the transport-entropy inequality (14) holds with

cg =2/ fl15,, M= flly- (18)
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5.2. Bernstein's concentration inequality: new results

Theorem 6

(under Gaussian integrabity) If f is of Gaussian integrability:
36 >0: B = / ew%m#(da@) < +00
s

then for any € € (0,9), (13) holds with

cp = Var,(f) + %L(a), M= \/z (19)

where

L(e) = p1og | PPy, Fimf-pts) (20)
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5.2. Bernstein's concentration inequality: new results
S
1F2=p ()l

L) < ellf? — n(F)3,
S a—e 12— ()

Moreover for all n > 1,2 > 0 such that 0 < 7 <

satisfies for all 0 < € <

(21)

1
27

P Ln(f) — u(f) > \/WJF \/\/5”102 —3H(f2)\¢1 (2)3/4

—X

we have

<e
(22)
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5.2. Bernstein's concentration inequality: new results

Theorem 7

(under one-sided exponential integrabity) If f € L?(S,u) and
the positive part f*(x) = max{f(x),0} is exponentially integrable,
ie.

36 >0: ETX) = / @) y(dx) < +oo,
S

then for any L > 0, setting (L) := ||f — f A L||y,, the Bernstein's
concentration inequality (13) holds with

cg = Varu ) + 2¢e(L \/2Varu ) + 2e(L
<+ E(L))wau(f) +2(e (L) +e (L)) (23)
M =Z%+¢(L).
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5.2. Bernstein's concentration inequality: ideas of proof

@ some technique from large deviations
@ Transport-entropy inequality, refining the arguments of Bolley-
Villani [1] for our purpose.

© Based on the known results recalled before
Comments on other concentrationn inequalities

@ Hoeffding's gaussian concentration inequality (corresponding to
M = 0 in Bernstein's inequality) is equivalent to the Gaussian
integrability (Djellout et al. AOP04)
Bernstein’s inequality is not sharp for large deviations: finer
estimate in this range was found by Fan-Grama-Liu [3, 4]
Classical asymptotic edge-expansion in moderate deviations:
Crameér, Bahadur-Rao, ...
Comparison with the Gaussian distribution...

©06 ©0 ©

For continuous-time symmetric Markov processes satisfying the
log-Sobolev or transport inequalities, this was proved by Gao et
al. [6] (SIAM 14).
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6. Applications: we can verify quickly the non-efficiency of
a learning machine.

Theorem 8

Assume the Gaussian integrability of the loss function Q(z,0). For
alln>1and0 <z <3,

- = i i <e ”,
p—(n,e) =P <911€1(f_;) REn(0) > 9125 R(0) + ¢(n, x)) e

20’ \[CG’I 3/4
n :U \/ “

0%(0) = sup Var(Q

Cq1(©) = sup [(Q(-,0) — R(@))2 — nl(Q(,0) = R(9))*) |1y,

0cO

Similar result holds under the exponential inequality of Q™ (-, ).
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6. Applications: we can verify quickly the non-efficiency of
a learning machine.

To verify if a learning machine does not work, given a confidence
level o € (0.5,1), one takes
Y=f(X)andY;=f(X;), 1<i<n

for some n so that

1
€ <n, log > < gy
11—«
o(©)

> log 1% which is dimension-free. Then by Theo-
€0 (67
rem 8, the minimal error of the learning machine

inf R(0) > inf n(0) —
2L B(O) > Jnf Ren(6) <

roughly n >

with probability «.

Conclusion: if infgcg R, (f) is not small with a sample size n
given above (dimension-free), then the learning machine is not good

most probably. 28 /20



End Slide

Thanks for your attention
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