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1. Introduction: empirical risk principle (ERP) in ML.

We have two random variables (r.v.): X valued in a domain D of
Rd, real-valued r.v. Y ; X is thought as cause, Y is the effect. The
joint law µ(·) = P(Z ∈ ·) of Z = (X,Y ) is unknown. We want to
know what is the “best” way to describe the dependence of Y upon
X. To this purpose we dispose of a great sample of data

Z1 = (X1, Y1), · · · , Zn = (Xn, Yn)

assumed to be the independent copies of Z = (X,Y ).
Learning machines furnish a special class of functions

F = {f(x, θ); θ ∈ Θ}

to approximatively learn the the dependence of Y upon X, where
Θ ⊂ RN is a domain of RN , N being the number of training
parameters which is often very huge (N ≍ 1011 for ChatGPT).
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1. Introduction: ERP in ML (cont’)

To describe what means the “best way”, we are given a risk or loss
function

Q(z, θ) = (y − f(x, θ))2 or |z − f(x, θ)| or other forms,

where z = (x, y) ∈ D×R. One main purpose of learning machines
is to minimise the empirical risk function

RE,n(θ) =
1

n

n∑
k=1

Q(Zk, θ) (1)

among all θ ∈ Θ, i.e. to find the minimisers of

argmin
θ∈Θ

RE,n(θ) = {θ̂n ∈ Θ | RE,n(θ̂n) ⩽ RE,n(θ), ∀θ ∈ Θ}. (2)

(that is called “training the parameters” in machine learning).
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1. Introduction: ERP in ML (cont’)

When Q(z, θ) = (y − f(x, θ))2, the theoretical risk of the learning
machine for a given θ is

R(θ) = E(Y − f(X, θ))2 = E(Y − f0(X))2 +E(f0(X)− f(X, θ))2

where f0(x) = E(Y |X = x) is the conditional expectation, known
as the non-linear regression function. Then the theoretical minimal
risk of the learning machine is

inf
θ∈Θ

R(θ) = E(Y − f0(X))2 + inf
θ∈Θ

E(f0(X)− f(X, θ))2. (3)

The first term at the right hand side (r.h.s.) can not be diminished
by any learning machine (because of the “random” dependence as-
sumption of Y upon X), and the least-square error

inf
θ∈Θ

E(f0(X)− f(X, θ))2.

qualifies the (theoretical optimal) efficiency of the learning machine.
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1. Introduction: ERP in ML (cont’)

Empirical Risk Principle (ERP in short), laid by
V.N. Vapnik: The Nature of Statistical Learning Theory, Second

Edition. Springer 1999.
as a basic (starting) principle for statistical learning theory, means
roughly

p+(n, ε) := P
(
inf
θ∈Θ

RE,n(θ) < inf
θ∈Θ

R(θ)− ε

)
p−(n, ε) := P

(
inf
θ∈Θ

RE,n(θ) > inf
θ∈Θ

R(θ) + ε

) (4)

go both to zero for any ε > 0. That is a consequence of the
Glivenko-Cantelli theorem about the (uniform) law of large number
in empirical processes.
When |Q(z, θ)| ⩽ M is bounded, a necessary and sufficient condi-
tion for the Glivenko-Cantelli theorem in terms of the VC entropy
number is known ([14, §2.3.4, Theorem 2.3]).
On the other hand, if Q(z, θ) is continuous in θ and Θ is compact,
ERP holds. 6 / 29



2. Probabilistic problems comed from the ERP

1 The first error probability p+(n, ε) gives an upper bound of the
theoretical minimal risk:

inf
θ∈Θ

R(θ) ⩽ inf
θ∈Θ

RE,n(θ) + ε

with probability 1− p+(n, ε) (the so called confidence level),

2 whereas the second error probability p−(n, ε) gives a lower
bound of the theoretical minimal risk:

inf
θ∈Θ

R(θ) ⩾ inf
θ∈Θ

RE,n(θ)− ε

with probability 1− p−(n, ε).

In other words, p+(n, ε) quantifies how good a leaning machine is;
p−(n, ε) quantifies the non-efficiency of a leaning machine.
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2. Probabilistic problems comed from the ERP: the curse
of dimension (CoD)

Estimating the above two error probabilities is then a fundamental
question in machine learning.
At first the classical limit theorems such as Donsker’s central limit
theorem (or invariance principle, see [9], [10]), the large and mod-
erate deviation principles (W. [17] (94); R. Wang et al. [16](10)),
which are only asymptotic (when n → +∞), can not be applied
directly, because the disposed sample size n can not be much big-
ger than the number N of parameters, and the dimension d of the
input vector X is often very high (256× 256 pixels for a picture for
example).
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2. Probabilistic problems comed from the ERP: CoD
(cont’d)

Recent progresses in high dimensional probability show that the error
probabilities depend often on the dimension d and the number N
of parameters, see Fournier and Guillin [5] (2015) for the dimension
dependence:

W1(Ln, µ) ≍
1

n1/d
, d ⩾ 3;

and the recent book in preparation [15] (2020) by Vershynin for an
account of art for the dependence on N, d.
See the works of F.Y. Wang and his collaborators for the Wasser-
stein distance between the empirical distribution and its stationary
distribution of diffusions.

Conclusion : Wasserstein distance is too sensible to the dimension
d, it gives rise to the CoD.
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2. Probabilistic problems comed from the ERP:
overcoming the curse of dimension (CoD)?

The whole book of Vapnik is to show that p+(n, ε) → 0 with an
explicit concentration inequality in terms of VC dimension or VC
entropy number.
His results together with recent developments in approximation the-
ory of the neural network:

1 Approximation theory: for deterministic dependence Y = f(X)
and for neural network,

Rmin := inf
θ∈Θ

E|f(X)− f(X, θ)| → 0

if the neural network is sufficiently wide or depth: the number
of units is large enough.
See E (ICM2020) .

2 For 1-layer neural network, p+(ε) may be small, even for large
N and d, but not so great (Vapnik [14]).

Those 2 demands are contradictory!
No word about p−(n, ε) in Vapnik [14] ! 10 / 29



3. Talagrand’s concentration inequality: overcoming the
curse of dimension (CoD)?

Talagrand ([11, 12, 13], 94AOP, 95IHES, 96Inv.Math.) investigated
in depth the concentration phenomena on product measure spaces
and renewed the theory of empirical processes. Massart [8] (AOP00)
found explicit constants in Talagrand’s concentration inequality, by
refining the log-Sobolev inequality approach of Ledoux.

Theorem 1

Given

1 a sequence of i.i.d.r.v. (ξk)k⩾1 valued in some Polish space S
equipped with the Borel σ-field, of common law µ;

2 an at most countable class H of bounded measurable functions
h on S such that |h| ⩽ b;
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3. Talagrand’s concentration inequality: overcoming the
curse of dimension (CoD)?

let

Z = sup
h∈H

| 1
n

n∑
k=1

(h(ξk)− µ(h))| (µ(h) :=
∫
S
hdµ = Eh(ξ1))

and
σ2(H) = sup

h∈H
Varµ(h). (5)

Then for any ε > 0,

P

(
Z > (1 + ε)EZ + σ(H)

√
8x

n
+ κ(ε)

bx

n

)
⩽ e−x, ∀x > 0 (6)

where κ(ε) = 2.5 + 32
ε .
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3. Talagrand’s concentration inequality: overcoming the
curse of dimension (CoD)?

Applying it to H = {Q(z, θ); θ ∈ Θ} we get

max{p+(ε), p−(ε)} ⩽ P
(
| inf
θ∈Θ

RE,n(θ)− inf
θ∈Θ

R(θ)| > ε

)
⩽ P

(
sup
θ∈Θ

|RE,n(θ)−R(θ)| > ε

)
⩽ e−x, x > 0

where

ε = (1 + δ)E sup
θ∈Θ

|RE,n(θ)−R(θ)|+ σ(H)

√
8x

n
+ κ(δ)

bx

n
(7)

for an arbitrary δ > 0. Except the bias

E sup
θ∈Θ

|RE,n(θ)−R(θ)|,

the dependence on N, d are only through the maximal variance
σ2(H) !
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4. Best known bias estimate in terms of VC dimension

Theorem 2

(Vershynin [15, Theorem 8.3.23]) Assume that a ⩽ h ⩽ b for all
h ∈ H and the VC dimension vc(H) of H is finite (the so called VC
class). Then

E sup
H

(Ln(h), µ(h)) ⩽ K

√
vc(H)

n
(b− a). (8)

where K > 0 is an absolute constant, and

Ln =
1

n

n∑
k=1

δZk .
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4. Best known bias estimate in terms of VC dimension
(cont’d)

Conclusion: with probability α ∈ (0, 5, 1), for x = − log(1− α),

| inf
θ
R(θ)− inf

θ
RE,n(θ)|

⩽

(
K

√
vc(H)

n
+ σ(H)

√
8x

n
+ κ(δ)

x

2n

)
(b− a)

(9)

In other words, if the sample size n ≫ vc(H), the empirical mini-
mal risk infθ RE,n(θ) of the learning machine attains the theoretical
minimal risk infθ RE(θ).
The dimension-dependence on d,N is transformed into that on the
VC dimension vc(H) of the learning machine.
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5. Sharp Bernstein’s concentration inequality

Purposes of this talk:

1 A dimension-free estimate for p−(n, ε)

2 removing the boundedness assumption.
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5.1. Bernstein’s concentration inequality: some known
results

Theorem 3

(Gozlan-Léonard [7]) Given the constants cB > 0,M ⩾ 0 and a
µ-exponentially integrable function h on S(= D × R), i.e.

∃δ > 0 :

∫
S
eδ|f |dµ < +∞, (10)

the following properties are equivalent:

(1) The log-Laplace transform of h(Z) satisfies

Λ(λ) := logEeλ[h(Z)−µ(h)] ⩽
cBλ

2

2(1− λM)
, λ ∈ (0, 1/M);

(11)
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5.1. Bernstein’s concentration inequality: some known
results

(2) for any r > 0 and n ⩾ 1,

P (Ln(f)− µ(f) > r) ⩽ exp

−n 2r2

cB

(√
1 + 2Mr

cB
+ 1
)2
 ;

(12)

(3) for any x > 0 and n ⩾ 1,

P

(
Ln(f)− µ(f) >

√
2cBx

n
+M

x

n

)
⩽ e−x; (13)

(4) the following transport-entropy inequality holds:

ν(f)− µ(f) ⩽
√
2cBH(ν|µ) +MH(ν|µ), (14)

for all ν ∈M1(S) such that ν ≪ µ and ν(|f |) < +∞.
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5.1. Bernstein’s concentration inequality: some known
results

In particular, when (11) holds, then the following Bernstein’s con-
centration inequality holds:

P (Ln(f)− µ(f) > r) ⩽ exp

(
− nr2

2(cB +Mr)

)
, r > 0. (15)

Remarks:

(1) By the order 2 limit expansion of Taylor-Young at λ = 0+
in (11), we see that the Bernstein concentration constant cB
satisfies

cB ⩾ Varµ(f) = µ(f2)− (µ(f))2. (16)
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5.1. Bernstein’s concentration inequality: some known
results

(2) Two sided (for both ±f) Bernstein’s concentration inequality
holds for some cB,M if and only if f(Z) is exponentially inte-
grable:

∥f∥ψ1 := inf{C > 0;

∫
S
(e|f |/C − 1)dµ ⩽ 1} < +∞

(Orlicz norm in Lψ1(µ), ψ1(x) := e|x| − 1).

Theorem 4

(Classical) If f is upper bounded and µ-square integrable, (11)
holds with

cB = Varµ(f), M =
1

3
∥(f − µ(f))+∥∞. (17)
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5.1. Bernstein’s concentration inequality: some known
results

We recall its proof.

Proof.

We may assume that µ(f) = 0 and f ⩽ 1. By the inequality

ex ⩽ 1 + x+
x2

2
· 1

1− x+/3
, x < 3

we have for all λ ∈ (0, 3),

Eeλf ⩽ 1 + λµ(f) +
λ2µ(f2)

2(1− λ/3)
⩽ exp

(
λ2µ(f2)

2(1− λ/3)

)
.

That is (11) with cB,M given in (17).

21 / 29



5.1. Bernstein’s concentration inequality: some known
results

Theorem 5

(Bolley-Villani 04, Gozlan-Léonard 07) If f is µ-exponentially inte-
grable, then the transport-entropy inequality (14) holds with

cB = 2∥f∥2ψ1
, M = ∥f∥ψ1 . (18)
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5.2. Bernstein’s concentration inequality: new results

Theorem 6

(under Gaussian integrabity) If f is of Gaussian integrability:

∃δ > 0 : Eeδf(X)2 =

∫
S
eδf

2(x)µ(dx) < +∞

then for any ε ∈ (0, δ), (13) holds with

cB = Varµ(f) +
1

3
L(ε), M =

√
2

3ε
, (19)

where

L(ε) =
1

ε
log

∫
S
eε(f̃

2−µ(f̃2))dµ, f̃ := f − µ(f) (20)
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5.2. Bernstein’s concentration inequality: new results

satisfies for all 0 < ε < 1
∥f̃2−µ(f̃2)∥ψ1

,

L(ε) ⩽
ε∥f̃2 − µ(f̃2)∥2ψ1

1− ε · ∥f̃2 − µ(f̃2)∥ψ1

. (21)

Moreover for all n ⩾ 1, x > 0 such that 0 < x
n ⩽ 1

2 , we have

P

Ln(f)− µ(f) >

√
2Varµ(f)

x

n
+

√√
2∥f̃2 − µ(f̃2)∥ψ1

3

(x
n

)3/4
⩽ e−x.

(22)
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5.2. Bernstein’s concentration inequality: new results

Theorem 7

(under one-sided exponential integrabity) If f ∈ L2(S, µ) and
the positive part f+(x) = max{f(x), 0} is exponentially integrable,
i.e.

∃δ > 0 : Eeδf
+(X) =

∫
S
eδf

+(x)µ(dx) < +∞,

then for any L > 0, setting ε(L) := ∥f − f ∧L∥ψ1 , the Bernstein’s
concentration inequality (13) holds with

cB = Varµ(f) + 2ε(L)
√
2Varµ(f) + 2ε(L)2

⩽ (1 + ε(L))Varµ(f) + 2(ε(L) + ε2(L))

M = L
3 + ε(L).

(23)
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5.2. Bernstein’s concentration inequality: ideas of proof

1 some technique from large deviations
2 Transport-entropy inequality, refining the arguments of Bolley-

Villani [1] for our purpose.
3 Based on the known results recalled before

Comments on other concentrationn inequalities
1 Hoeffding’s gaussian concentration inequality (corresponding to
M = 0 in Bernstein’s inequality) is equivalent to the Gaussian
integrability (Djellout et al. AOP04)

2 Bernstein’s inequality is not sharp for large deviations: finer
estimate in this range was found by Fan-Grama-Liu [3, 4]

3 Classical asymptotic edge-expansion in moderate deviations:
Cramèr, Bahadur-Rao, ...

4 Comparison with the Gaussian distribution...
5 For continuous-time symmetric Markov processes satisfying the

log-Sobolev or transport inequalities, this was proved by Gao et
al. [6] (SIAM 14).
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6. Applications: we can verify quickly the non-efficiency of
a learning machine.

Theorem 8

Assume the Gaussian integrability of the loss function Q(z, θ). For
all n ⩾ 1 and 0 < x < n

2 ,

p−(n, ε) := P
(
inf
θ∈Θ

RE,n(θ) > inf
θ∈Θ

R(θ) + ε(n, x)

)
⩽ e−x,

ε(n, x) =

√
2σ2(Θ)x

n
+

√√
2CGI(Θ)

3

(x
n

)3/4
σ2(Θ) = sup

θ
Var(Q(·, θ));

CGI(Θ) = sup
θ∈Θ

∥(Q(·, θ)−R(θ))2 − µ((Q(·, θ)−R(θ))2)∥ψ1

Similar result holds under the exponential inequality of Q+(·, θ).
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6. Applications: we can verify quickly the non-efficiency of
a learning machine.

To verify if a learning machine does not work, given a confidence
level α ∈ (0.5, 1), one takes

Y = f(X) and Yi = f(Xi), 1 ⩽ i ⩽ n

for some n so that

ε

(
n, log

1

1− α

)
⩽ ε0

roughly n ⪰ σ(Θ)
ε20

log 1
1−α , which is dimension-free. Then by Theo-

rem 8, the minimal error of the learning machine

inf
θ∈Θ

R(θ) ⩾ inf
θ∈Θ

RE,n(θ)− ε0

with probability α.

Conclusion: if infθ∈ΘRE,n(θ) is not small with a sample size n
given above (dimension-free), then the learning machine is not good
most probably. 28 / 29



End Slide

Thanks for your attention
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